Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168707, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37992820

RESUMO

The Watch List (WL) is a monitoring program under the European Water Framework Directive (WFD) to obtain high-quality Union-wide monitoring data on potential water pollutants for which scarce monitoring data or data of insufficient quality are available. The main purpose of the WL data collection is to determine if the substances pose a risk to the aquatic environment at EU level and subsequently to decide whether a threshold, the Environmental Quality Standards (EQS) should be set for them and, potentially to be listed as priority substance in the WFD. The first WL was established in 2015 and contained 10 individual or groups of substances while the 4th WL was launched in 2022. The results of monitoring the substances of the first WL showed that some countries had difficulties to reach an analytical Limit of Quantification (LOQ) below or equal to the Predicted No-Effect Concentrations (PNEC) or EQS. The Joint Research Centre (JRC) of the European Commission (EC) organised a series of workshops to support the EU Member States (MS) and their activities under the WFD. Sharing the knowledge among the Member States on the analytical methods is important to deliver good data quality. The outcome and the discussion engaged with the experts are described in this paper, and in addition a literature review of the most important publications on the analysis of 17-alpha-ethinylestradiol (EE2), amoxicillin, ciprofloxacin, metaflumizone, fipronil, metformin, and guanylurea from the last years is presented.

2.
Sci Total Environ ; 903: 165905, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37532041

RESUMO

The possibilities of expanding a groundwater quality monitoring scheme by passive sampling using polar organic chemical integrative sampler (POCIS) comprising HLB sorbent as the receiving phase were explored. Passive sampling and grab sampling were carried out simultaneously in the regions with vulnerable groundwater resources in Slovakia, between 2013 and 2021. For 27 pesticides and degradation products detected both in POCIS and the grab samples, in situ sampling rates were calculated and statistically evaluated. The limited effectiveness of the receiving phase in POCIS for sampling polar or ionized compounds was confirmed through a comparison of the medians of compound-specific sampling rates. For the majority of the monitored compounds the median sampling rates varied between 0.01 and 0.035 L/day. In some cases, the actual in situ values could be confirmed by parallel exposure of POCIS and silicone rubber sheet employed to obtain a benchmark for maximum attainable sampling rate. Sampling site and sampling period appear to have also some influence on the sampling rates, which was attributed in part to the groundwater velocity varying in both space and time. The influence of physico-chemical parameters (temperature, pH, electrolytic conductivity) remains mostly questionable due to the naturally limited ranges of recorded values over the entire duration of the study. Concentrations of pollutants in POCIS could be used for predicting time weighed average concentrations in water, provided the sampling rates were known and relatively constant. Generally, the compound-specific sampling rate cannot be considered constant due to a combination of naturally varying environmental factors that influence the actual in situ sampling rate. The relative standard deviation of concentration data from POCIS exposed in triplicates varied between approx. 5 %-50 %. Utilizing exploratory data analysis approach and tools enabled us to obtain a relatively complex picture of the situation and progress regarding pesticide pollution of groundwater in the monitored areas.

3.
Sensors (Basel) ; 21(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502643

RESUMO

Homography mapping is often exploited to remove perspective distortion in images and can be estimated using point correspondences of a known object (marker). We focus on scenarios with multiple markers placed on the same plane if their relative positions in the world are unknown, causing an indeterminate point correspondence. Existing approaches may only estimate an isolated homography for each marker and cannot determine which homography achieves the best reprojection over the entire image. We thus propose a method to rank isolated homographies obtained from multiple distinct markers to select the best homography. This method extends existing approaches in the post-processing stage, provided that the point correspondences are available and that the markers differ only by similarity transformation after rectification. We demonstrate the robustness of our method using a synthetic dataset and show an approximately 60% relative improvement over the random selection strategy based on the homography estimation from the OpenCV library.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador
4.
J Phys Chem B ; 123(50): 10837-10849, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742405

RESUMO

The radiolytic stability of a series of room-temperature ionic liquids (ILs) composed of bis(trifluoromethylsulfonyl)imide anion (Tf2N-) and triethylammonium, 1-butyl-1-methylpyrrolidinium, trihexyl(tetradecyl)phosphonium, 1-hexyl-3-methylpyridinium, and 1-hexyl-3-methylimidazolium (hmim) cations was studied using spin-trap electron paramagnetic resonance (EPR) spectroscopy with a spin-trap α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN). The trapped radical yields were measured as a function of POBN concentration and as a function of radiation dose by double integration of the broad unresolved lines. Well-resolved motionally narrowed EPR spectra for the trapped radicals were obtained by dilution of the ILs with CH2Cl2 after irradiation. The trapped radicals were identified as mainly carbon-centered alkyl and •CF3, and their ratio varies greatly across the series of ILs. Expected nitrogen-centered radicals derived from Tf2N- were not observed. The hmim liquid proved most interesting because a large part of the trapped radical yield (entirely carbon-centered) grew in over several hours after irradiation. We also discovered a complicated narrow-line stable radical signal in this neat IL with no spin trap added, which grows in over several hours after irradiation and decays over several weeks.

5.
Sci Total Environ ; 636: 1597-1607, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29606316

RESUMO

A "dynamic" passive sampling (DPS) device, consisting of an electrically driven large volume water pumping device coupled to a passive sampler exposure cell, was designed to enhance the sampling rate of trace organic compounds. The purpose of enhancing the sampling rate was to achieve sufficient method sensitivity, when the period available for sampling is limited to a few days. Because the uptake principle in the DPS remains the same as for conventionally-deployed passive samplers, free dissolved concentrations can be derived from the compound uptake using available passive sampler calibration parameters. This was confirmed by good agreement between aqueous concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) derived from DPS and conventional caged passive sampler. The DPS device enhanced sampling rates of compounds that are accumulated in samplers under water boundary layer control (WBL) more than five times compared with the conventionally deployed samplers. The DPS device was deployed from a ship cruising downstream the Danube River to provide temporally and spatially integrated concentrations. A DPS-deployed sampler with surface area of 400cm2 can reach sampling rates up to 83Ld-1. The comparison of three passive samplers made of different sorbents and co-deployed in the DPS device, namely silicone rubber (SR), low density polyethylene (LDPE) and SDB-RPS Empore™ disks showed a good correlation of surface specific uptake for compounds that were sampled integratively during the entire exposure period. This provided a good basis for a cross-calibration between the samplers. The good correlation of free dissolved PAHs, PCBs and HCB concentration estimates obtained using SR and LDPE confirmed that both samplers are suitable for the identification of concentration gradients and trends in the water column. We showed that the differences in calculated aqueous concentrations between sampler types are mainly associated with different applied uptake models.


Assuntos
Monitoramento Ambiental/instrumentação , Poluentes Químicos da Água/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Rios/química
6.
J Phys Chem A ; 111(23): 4958-64, 2007 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-17516635

RESUMO

Laser flash photolysis with the Fourier transform electron paramagnetic resonance (FT EPR) and optical spectroscopy detection methods on the nanosecond time scale have been employed in order to investigate the oxidation mechanism of cyclic dipeptides glycine, alanine, and sarcosine anhydrides initiated by SO4*- or 9,10-anthraquinone-2,6-disulfonate (2,6-AQDS) triplet in oxygen free aqueous solutions. A direct hydrogen abstraction from the ring C-H position of an anhydride by both oxidants is proposed as the primary reaction, rather then an electron transfer from nitrogen followed by (alpha)C-H deprotonation. The overall second-order rate constants for the reaction with SO4*- were determined to be 7.2 x 10(7) M(-1) s(-1), 1.2 x 10(8) M(-1) s(-1), and 5.2 x 10(8) M(-1) s(-1) for glycine anhydride, alanine anhydride, and sarcosine anhydride, respectively. The rate constants for 2,6-AQDS triplet as oxidizing species are about two times lower. The radical intermediate products derived from cyclic dipeptides observed on the microsecond time scale were assigned to the general structure of piperazine-2,5-dione-3-yl radical. These are spin polarized by the mechanisms of chemically induced dynamic electron polarization (CIDEP). For SO4*- as the oxidant the spectra are exhibiting an E/A* polarization pattern originating partially from F-pairs of two piperazine-2,5-dione-3-yl radicals.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Lasers , Peptídeos Cíclicos/química , Fotólise , Dipeptídeos/química , Análise de Fourier , Radicais Livres/química , Luz , Estrutura Molecular , Oxirredução , Fotoquímica , Análise Espectral
7.
J Phys Chem A ; 110(22): 7293-302, 2006 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-16737283

RESUMO

Using time-resolved Fourier transform electron paramagnetic resonance, FT EPR, and optical spectroscopy, the photooxidation of glycine, alpha-alanine, alpha-aminoisobutyric acid, and model compounds beta-alanine, methylamine and sodium acetate, by excited triplets of anthraquinone-2,6-disulfonate dianion was studied in aqueous solutions in the pH range 5-13. Anthraquinone radical trianions showing strong emissive spin-polarization (CIDEP) were formed, indicating fast electron transfer from the quenchers to the spin-polarized quinone triplet as the primary reaction. None of the primary radicals formed upon one-electron oxidation of quenchers could be detected at the nanosecond time scale of FT EPR measurements because of their very fast transformation into secondary products. The latter were identified to be decarboxylated alpha-aminoalkyl radicals for alpha-amino acids anions and zwitterions, beta-aminoalkyl radicals for beta-alanine zwitterions, and methyl radicals for acetate anions; corresponding aminyl radicals were the first EPR detectable products from beta-alanine anions and methylamine. Thus, anthraquinone-2,6-disulfonate triplet can take an electron from both NH(2)- and -CO(2)(-) functional groups forming aminium ((+*)NH(2)-) and acyloxyl (-CO(2)(*)) radicals, respectively. Aminium radicals derived from beta-alanine anions and CH(3)-NH(2) stabilize by deprotonation into aminyl radicals, whereas these derived from alpha-amino acids anions are known to suffer ultrafast decarboxylation (tau approximately 10 ps). Analysis of the polarization patterns revealed that decarboxylation from acyloxyl radicals are considerably slower (ns < tau < 0.1 micros). Therefore, in the case of alpha-amino acids, the isoelectronic structures NH(2)-CR(2)-CO(2)(*) and (+*)NH(2)-CR(2)-CO(2)(-) probably do not constitute resonance mesomeric forms of one and the same species and the decarboxylation of aminium radicals is not preceded by the intramolecular carboxylate to amino group electron transfer. Absolute triplet quenching rate constants at zero ionic strength were in the range of 2 x 10(8) to 2 x 10(9) M(-1) s(-1) for R-NH(2) and 2 x 10(7) to 10(8) M(-1) s(-1) for R-CO(2)(-) type of electron donors, reflecting in principle their standard reduction potentials. The strengths of acids: (+)NH(3)-(*)CH(2), (+)NH(3)-(*)C(CH(3))H, and (+)NH(3)-(*)C(CH(3))(2), pK(a) <4, >6, and >7, respectively, were found to be remarkably strongly dependent on alpha-C substitution. The conjugate bases of these alpha-aminoalkyl radicals reduce anthraquinone-2,6-disulfonate dianion ground state with k(sec) = 3 x 10(9) M(-1) s(-1).


Assuntos
Aminoácidos/química , Aminoácidos/efeitos da radiação , Antraquinonas/química , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Análise de Fourier , Concentração de Íons de Hidrogênio , Lasers , Micro-Ondas , Modelos Biológicos , Estrutura Molecular , Oxirredução , Fotoquímica , Soluções/química , Análise Espectral/métodos , Raios Ultravioleta , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...